
A Graph-based Theory to Analyze App
Soundness Properties

Tooraj Helmi (thelmi@usc.edu)

Abstract
Apps are specific programs; however, the
existing theories used with programs are
insufficient to study app. This paper justifies
the need for a theory applicable to apps,
introduces it, and uses it to assert app
soundness properties.

Introduction
Apps are ubiquitous. In 2021 more than 4
billion people used apps on their
smartphones. However, a theory on apps is
missing in software engineering. Almost
anybody can quickly - but not accurately -
answer the question of “what is an app?”.
However, if we ask this question from
people engaged in software research, it
could take some time and deliberation to
develop a definition applicable to all the
apps. The description provided on the
internet does not help to go any further
either. Wikipedia defines a “mobile app” as
“a computer program or software application
designed to run on a mobile device such as
a phone, tablet, or watches.” This definition
includes the OS itself and programs that run
in the background as the app which is not
what we usually conceive of an app.
Although multiple models like MVC, MVVM
are used to govern the architecture of
commercial apps, they are not suited to
conduct an analytical study of the app's
properties.

Specifically, we would like to define a model
that can help us answer the following
questions:

1. How do we know if an app is
responsive or user-friendly?

2. How do we know if an app is going
to crash at run-time?

3. How do we know if an app satisfies
the user’s needs?

4. How can we synthesize an app?
5. How can we find areas an app can

be optimized for?

We believe fundamental, self-containing
research focusing on the basic properties of
apps - which we call an app theory - is
missing. The lack of app theory has
manifested itself in many ways; For
example, an app sometimes crashes after
its release. It is typically not easy to figure
out the issue and fix it in practice - since the
information provided to the developer in
crash analytics tools is not enough to allow
for a proper simulation of the situation. One
can ask why the primary app development
tools like Visual Studio, Android Studio, or
XCode do not detect the possibility of
crashes during development? Is it
necessarily a run-time task to detect these
issues? As we will show in this paper, the
answer is no; However, the lack of such
analysis goes back to the same core
problem: the non-existence of a theory that
can precisely describe an app’s static and
dynamic structure.

mailto:thelmi@usc.edu

The theory of programs has been studied
for more than 50 years. Floyd Hoare
provided a theoretical study on the
correctness of a program in his seminal
paper \cite{hoare1969axiomatic} in 1969.
Since then, many other theories have been
introduced to study many aspects of
programs. For instance, program
abstraction \cite{clarke2004predicate} has
been introduced to disguise complex details
of programs to make it possible to apply
static analysis to detect major defects
during the compile time. Program
hyper-properties were introduced to study
the program from a non-functional
perspective \cite[lamport1977proving}. The
concept of time was applied to the
methodology for the formal specification,
verification, and development of reactive
programs using the tools of temporal logic
\cite{pnueli1992temporal}. Program
synthesizer has been built using
search-based techniques like CEGIS
\cite{solar2008program} and SYGUS
\cite{alur2013syntax}. All of this research
has had a significant impact on advancing
the theory of programs.

While we can apply the general program
theories to apps, an app has a specific
characteristic differentiating it from other
programs. That is the existence of the user
at the center of the app definition. First,
most apps are deterministic, i.e., they have
a particular defined input when the program
starts. Thus, in an app, a user introduces
randomness as he interacts with the app.
Second, the app specification provided as a
description of user intent \cite{survey} is
much more complex than the specification
provided for simple programs. Third, while
most programs are meant to terminate,
apps are designed to run until the user
explicitly decides to end them. Last, the

scale of time is much slower than what is
typically expected in programs.

In this paper, we begin by providing several
key definitions of an app and app model.
We will then use these definitions to lay the
main contribution of this paper, which is a
graph-based theory on apps. The theory
consists of several proven corollaries and
algorithms to address four critical aspects of
an app: soundness, optimization,
verification, and synthesis. This paper
focuses on the first aspect and offers
algorithms that can detect app issues or
detect suboptimal app areas.

Problem
There is no systematic way to analyze apps
beyond general approaches used for
generic programs statically. However, as
mentioned earlier, apps are significantly
different from regular programs. Specifically,
given an app, we would like to make
predictions about the following app
characteristics:

Soundness: the app will behave without
any deviation from expectations.
Verification: the app satisfies the user’s
intent.
Optimization: the app is designed and
implemented to provide the best possible
outcome.

We also want to generate an app given the
user intent, which we call app synthesis.

Methodology
We start with a basic definition of an app.
Next, we use this basic definition to derive a
more complex meaning called the app

1

model that specifies what an app is made
of. We will then introduce a representation,
called an app graph, that helps us introduce
our theories about the app.

App Definition
We define an app as “a program that allows
 users to interact with a computerized
device .” This definition includes three main
components:

1. First, an app is a specification of a
program.

2. Second, a user should be able to
interact with an app.

3. Third, an app should run on a
computerized device.

These components can and will affect each
other. For example, the device’s hardware
defines possible user interactions like touch,
voice command, face recognition, etc. Or
the user interaction can trigger the
execution of different proportions of the
program.

App Model
An app model is a systemic definition of an
app that specifies what an app is made of.
We use the basic app definition to reason
about the app model. An app model
contains six specific components: data,
model, API, event, and controller.

Data
There are two ways that an app can
respond to user interactions. Stateless and
stateful. A stateless app does not memorize
anything about the user’s past interactions.
For example, a mirror app does the same
thing every time it is launched: it reflects the

object in front of its camera regardless of
how many other images it has shown in that
past. However, most apps are stateful; they
keep track of user interactions, including
typed information, the last screen opened,
etc. - to adapt to user behavior.

Stateful apps keep “data.” Data can be
either stored locally or remotely. In most
cases, the data is kept remotely to run the
app on more than one device - for example,
a user might need to run the app even if she
loses the original device. Also, many apps
allow multiple users to interact with each
other, in which case the combined data
should be kept somewhere outside yet
accessible to all devices.

Model
While it is possible to have an app make a
round trip call to retrieve remote data all the
time, this makes the app very slow and not
practical. Hence, apps keep a local version
of the data to run the logic that determines
how to react to user interaction. We call this
local version of the data “the model.” The
model can be identical or different from the
data in terms of its structure. Still, it is often
synchronized with data to ensure local
changes are not lost and include remote
changes.

API
Not all app functionality can or may run
locally. For example, when the level of
processing is beyond what the device can
handle, or when there is a need to have
access to large amounts of remote data, the
processing has to take place on a remote
server. Another case that the processing
may not happen locally is dealing with
sensitive or confidential data; In such cases,
APIs call the remote logic and return the

2

results to the client. APIs can be called
synchronously, meaning the app has to wait
for its response to continue, or
asynchronously, meaning it can continue
right away.

Event
Apps function by responding to some
events that can be internal or external to the
app. The internal event is some specific
condition that is defined in the model. For
example, an event can be raised when a
particular parameter’s value gets larger than
a threshold. An external event includes
user interactions like tapping a button or
receiving a response for an API.

View
Most apps include a visual user interface
called view. The view visualizes the model
and also allows the user to interact with the
app.

Controller
A controller is the brain of the app. It can
receive events. It contains specific logic to
alter models, make API calls, or renders the
views. Note that it is possible to have views
and models implement such functionality -
in such cases, the controller is implicitly
implemented inside the view and model.

MVCADE
We use the six components: model, view,
controller, API, data, and event to define the
app model. Figure 1 shows the block
diagram of an app based on MVCADE.

Figure 1. MVCADE App Model

App Graph
An app is typically made of several screens.
Each screen typically has its view, model,
and controller. At any given time, a screen is
shown to the user, and based on the events,
the controller of the current screen can
decide to navigate to another screen, call an
API, or update the model or view of the
current screen. We use a graph to represent
the dynamic behavior of the app. Figure 2
shows an example of the app graph.

Figure 2. App Graph

3

As shown in Figure 2, there are different
nodes in the graph. Each screen is
represented as a rectangular node that
contains M, V, and C for that particular
screen. API and data are shown as A and D
nodes. The edges represent navigation, API
call, or a self-update. A label on the edge
specifies the event. A dot is placed on an
async API call, and a double-circle is used
to indicate APIs that always return the same
data - also known as reference APIs.

While all the components are required to
explain how that app functions, some are
used less frequently. Therefore we prefer to
provide a simplified version of the graph that
is shown in Figure 3.

Figure 3. Simplified App Graph

In the simplified app graph, the screen
components are lumped into a single node.

Graph-Specific Definitions
Using the simplified graph, we provide
definitions that help us with the corollaries
and algorithms provided in the following
sections.

DEF 1.1. CORE NODE

A core node (N*) is a node that the user
should return to using a bounded number of
events.

DEF 1.2: NAVIGATION TIME
Navigation time between nodes (i) and (j)
(t_ij) is the minimum time it takes to
navigate from node (i) to node (j), assuming
zero time spent on user input.

t_ij is the sum of the time for all none-async
APIs on each node (k) [i ≤ k ≤ j] denoted as
(a_k_r) where node (k) can have k_R APIs
[0 ≤ k_r ≤ k_R]. Denoting the path from (i)
to (j) as (l), we can calculate the navigation
time as:

DEF 1.3: NAVIGATION EVENTS
Navigation events (e_ij) are the minimum
number of events required to navigate from
node (i) to node (j), excluding user input.

DEF 1.4: RETURNING LOOP
A returning loop is a path that starts from a
core node and eventually returns to the
same core node within a bounded number
of events.

DEF 1.5: STICKING LOOP
A sticking loop is a path that starts from a
core node and does not necessarily return
to the same core node within a bounded
number of events.

DEF 1.6: CONDENSED GRAPH, G*
A condensed graph is produced by
eliminating all returning loops.

We can produce a condensed graph by
applying algorithm 1.1 to a given simplified
app graph.

4

ALGO 1.1. Generating Condensed Graph

App Soundness
Roughly speaking, an app is sound if it
provides a satisfactory experience to its
user. Unfortunately, we have all used
not-sound apps Apps that crash, respond
slowly to our interactions, or get stuck are
some examples of such apps. In this
section, we provide algorithms to measure
and improve app soundness.

Non-Stickiness
In a sticky app, users can get stuck in some
app screens, meaning they cannot get to
other parts of the app once they get stuck.
We would like to detect if such cases exist
simply by analyzing the app graph.
Colloraries 1, 2, and 3 specify the conditions
for an app to be sticky.

DEF 2.1: BLACKHOLE
A blackhole denoted as �̌� is a node in G*
that, once the user enters, cannot get out of
it.

DEF 2.2: MUTUAL BLACKHOLE SET
A mutual blackhole set, denoted by B, is a
subset of nodes in G* that once the user
enters, one will stay in that subset forever.

DEF 2.3: STICKINESS
An app is sticky if the user cannot reach any
core node with a bounded number of
events.

COR 2.1: CONDITION 1 FOR STICKINESS

COR 2.2: CONDITION 1 FOR STICKINESS

COR 2.3: NECESSARY AND SUFFICIENT
CONDITION FOR STICKINESS

We can use ALGO 2.1 to assert if an app is
sticky.

1. Generate condensed graph using
ALGO 1.1
2. Use COL 2.3 to assert app stickiness

ALGO 2.1. Detecting app stickiness

5

Responsiveness
Being non-sticky is not enough to provide
an excellent experience to the user. For
instance, it can take a long time to navigate
from a screen to another. This section
introduces techniques to measure app
responsiveness and offers methods to
reduce the response time.

DEF 3.1: CRITICAL NODE
The critical node is a core node in a
non-sticky G* with the highest navigation
time.

DEF 3.2: RESPONSIVENESS
App is responsive ⇔ 𝑡_(𝑁^𝐶) < 𝑡_𝑅

We can use ALGO 3.1 to assert app
responsiveness.

1. Generate condensed graph using
ALGO 1.1
2. Select the critical node - note that we
obtain the navigation times as part of
ALGO 1.1.
3. Apply DEF 3.2 to the asset if the app is
responsive.

ALGO 3.1. Assertion on app
responsiveness

DEF 3.3: PATH, SUCCESSOR,
PREDECESSOR
If there is a path from node M to node N, N
is called a successor to M with respect to
path P, denoted as 𝑀 ↔ (𝑃) 𝑁. M is called
the predecessor with respect to path P. (M
↔ N means a path from M to N, an
inclusive set of nodes between M and N.

DEF 3.4: SUPERFLUOUS CALLS
A reference API (R-API) is superfluous if it
is called more than once.

COR 3.5: VERIFYING
SUPERFLUOUSNESS
An R-API is superfluous if there is more
than one incoming edge to it.

DEF 2.14: INDIFFERENT CALLS
An API (A) is indifferent concerning M N,
denoted as 𝑀↔(𝐴) 𝑁 if calling A on M
returns the same result as if it was called on
N.

DEF 2.15: LATE CALLS
𝑀↔(𝐴) 𝑁 is a late call if A is called on node
𝑃∈𝑀→𝑁∧𝑃≠𝑀

User-Friendliness
A user-friendly app offers an effortless
experience to the users. In this section, we
introduce algorithms to measure app
user-friendliness and techniques to improve
friendliness.

DEF 4.1: FAR NODE
The far node is a core node with the highest
navigation events.

DEF 4.2: USER FRIENDLINESS
App is user-friendly ⇔ 𝑒_(𝑁^𝐹)< 𝑒_𝑅.

We can use ALGO 4.1 to assert app
user-friendliness.

1. Generate condensed graph using
ALGO 1.1
2. Select the far node - note that we
obtain the navigation events as part of
ALGO 1.1.
3. Apply DEF 4.2 to the asset if the app is
user-friendly.

ALGO 4.1. Assertion on app
user-friendliness

6

Stability
Null pointer exceptions are the most
significant cause of app crashes on Google
Play1. This section introduces techniques to
detect some of such crashes.

DEF 5.1: NULL-BOUND CRASH
A null-bound crash happens when at least
one of its views has a binding to a property
of a null object.

ALGO 5.1. Detecting null-bound crash

Results
We applied algorithm 5.1 to detect crashes
in a mobile app developed in visual studio.
The app is described in Appendix. While the
app passes the validation included in major
IDEs, it crashes when the user taps on a
button. Using algorithm 5.1, we can detect
the possibility of a crash during compilation.
Figure 4 shows how we can detect a
potential crash for this sample application.

Figure 4. Detecting a crash in a mobile
app.

1

https://developer.android.com/games/optimize/cr
ash

Conclusion and Future
Work
In the paper, we introduced a graph-based
theory on the app. Using this theory we
were able to define soundness properties of
the app based on the graph equivalent
properties and derive algorithms that can
detect and improve soundness issues
including non-stickiness, responsiveness,
user-friendliness, and stability.

While in this paper we only study the
soundness properties, the graph-based
theory has shown very promising results in
our preliminary research on other categories
of app properties and applications. These
categories include: verification, synthesis,
and optimizations. For example, we have
synthesized “sound” apps based on some
plain text requirements. While these
requirements do not provide any information
about what screens should exist or require
the existence of navigational controls, our
graph-based representation can make very
useful assertions to generate a sound app.

7

References
@article{hoare1969axiomatic,

title={An axiomatic basis for computer
programming},
author={Hoare, Charles Antony Richard},
journal={Communications of the ACM},
volume={12},
number={10},
pages={576--580},
year={1969},
publisher={ACM New York, NY, USA}

}

@article{clarke2004predicate,
title={Predicate abstraction of ANSI-C

programs using SAT},
author={Clarke, Edmund and Kroening,

Daniel and Sharygina, Natasha and Yorav,
Karen},

journal={Formal Methods in System
Design},
volume={25},
number={2},
pages={105--127},
year={2004},
publisher={Springer}

}

@article{lamport1977proving,
title={Proving the correctness of

multiprocess programs},
author={Lamport, Leslie},

journal={IEEE transactions on software
engineering},
number={2},
pages={125--143},
year={1977},

publisher={IEEE}
}

@article{pnueli1992temporal,
title={The temporal logic of reactive and

concurrent systems},
author={Pnueli, Amir and Manna, Zohar},
journal={Springer},
volume={16},
pages={12},
year={1992},
publisher={Springer}

}

@book{solar2008program,
title={Program synthesis by sketching},
author={Solar-Lezama, Armando},
year={2008},
publisher={Citeseer}

}

@book{alur2013syntax,
title={Syntax-guided synthesis},
author={Alur, Rajeev and Bodik, Rastislav

and Juniwal, Garvit and Martin, Milo MK and
Raghothaman, Mukund and Seshia, Sanjit
A and Singh, Rishabh and Solar-Lezama,
Armando and Torlak, Emina and Udupa,
Abhishek},
year={2013},
publisher={IEEE}

}

8

Appendix A. An
example of a crashing
app
The app shown in Figure 5 is a simple
Android app consisting of two screens.
There are two buttons on the first screen.
The first one navigates the user to the
second screen. The second button first sets
the user object to null and then navigates.
Tapping on the second button results in a
crash since, in the second screen, we are
binding the greeting sentence to the first
name and last name properties of the user,
which is null in this case. We have used
Visual Studio to develop this app, but VS
does not contain a tool that can detect the
possibility of crashing even in this simple
app.

Figure 5. The crashing app

9

